#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100010, M = N << 1;
int n, m;
int a[N], na[N]; // na表示新编号
int h[N], e[M], ne[M], idx;
struct Tree {
int l, r;
LL sum, add;
} tr[N << 2];
int dfn[N], ts; // dfn表示dfs序(优先遍历重儿子)
int dep[N], sz[N], top[N], fa[N], son[N];
// dep[i]表示i的深度(根节点的深度为1),sz[i]表示以i为根的子树的大小
// top[i]表示i所在重链的顶点,fa[i]表示i的父结点,son[i]表示子树i的重儿子
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void dfs1(int u, int father, int depth) {
dep[u] = depth, fa[u] = father, sz[u] = 1;
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (j == father) continue;
dfs1(j, u, depth + 1);
sz[u] += sz[j];
if (sz[son[u]] < sz[j]) son[u] = j;
}
}
// 点u所属的重链的顶点为t
void dfs2(int u, int t) {
dfn[u] = ++ts, na[ts] = a[u], top[u] = t;
if (!son[u]) return; // u为叶结点
dfs2(son[u], t); // 重儿子
// 处理轻儿子
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (j == fa[u] || j == son[u]) continue;
dfs2(j, j); // 轻儿子所处重链的顶点就是自己
}
}
void pushup(int u) {
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r) {
if (l == r) {
tr[u] = {l, r, na[r], 0};
} else {
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void pushdown(int u) {
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if (root.add) {
left.add += root.add, left.sum += root.add * (left.r - left.l + 1);
right.add += root.add, right.sum += root.add * (right.r - right.l + 1);
root.add = 0;
}
}
// 将[l,r]区间加上k
void update(int u, int l, int r, int k) {
if (tr[u].l >= l && tr[u].r <= r) {
tr[u].add += k;
tr[u].sum += k * (tr[u].r - tr[u].l + 1);
return;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) update(u << 1, l, r, k);
if (r > mid) update(u << 1 | 1, l, r, k);
pushup(u);
}
// 求[l,r]区间和
LL query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r) {
return tr[u].sum;
}
pushdown(u); // 下传add标记
LL res = 0;
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) res += query(u << 1, l, r);
if (r > mid) res += query(u << 1 | 1, l, r);
return res;
}
// 将树上u->v的路径全部加上k
void update_path(int u, int v, int k) {
while (top[u] != top[v]) { // u,v不在同一个重链上
if (dep[top[u]] < dep[top[v]]) swap(u, v);
// 加上u所在的重链和和
// 其区间为[dfn[top[u]], dfn[u]]
update(1, dfn[top[u]], dfn[u], k);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
// 加上u-v之间路径的和
update(1, dfn[v], dfn[u], k);
}
// 求树上u-v之间的路径和
LL query_path(int u, int v) {
LL res = 0;
while (top[u] != top[v]) { // u,v不在同一个重链上
if (dep[top[u]] < dep[top[v]]) swap(u, v);
// 加上u所在的重链和和
// 其区间为[dfn[top[u]], dfn[u]]
res += query(1, dfn[top[u]], dfn[u]);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
// 加上u-v之间路径的和
res += query(1, dfn[v], dfn[u]);
return res;
}
// 将树上以u为根的子树全部加上k
void update_tree(int u, int k) {
// 对应区间 [dfn[u], dfn[u]+sz[u]-1]
update(1, dfn[u], dfn[u] + sz[u] - 1, k);
}
// 求树上以u为根的子树的和
LL query_tree(int u) {
// 对应区间 [dfn[u], dfn[u]+sz[u]-1]
return query(1, dfn[u], dfn[u] + sz[u] - 1);
}
int main() {
memset(h, -1, sizeof h);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 0; i < n - 1; i++) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs1(1, -1, 1); // 预处理dep,fa,sz
dfs2(1, 1); // 求dfs序dfn,top
build(1, 1, n); // 建立线段树
for (scanf("%d", &m); m--; ) {
int type, u, v, k;
scanf("%d", &type);
if (type == 1) {
scanf("%d%d%d", &u, &v, &k);
update_path(u, v, k);
} else if (type == 2) {
scanf("%d%d", &u, &k);
update_tree(u, k);
} else if (type == 3) {
scanf("%d%d", &u, &v);
printf("%lld\n", query_path(u, v));
} else {
scanf("%d", &u);
printf("%lld\n", query_tree(u));
}
}
return 0;
}