解题思路
求组合数值(mod p) 可以将组合数分解成质数,(先分子分解,后分母分解,然后每个质数的个数差),然后再求组合数(mod p)
应用到 线性筛、求一个阶乘含质数个数的公式、高精度乘法
题解
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 5010;
int primes[N], cnt;
bool st[N];
int sum[N];
void get_primes(int n)
{
for (int i = 2; i <= n; i ++)
{
if(!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
int get(int n, int p)
{
int res = 0;
while(n)
{
res += n / p;
n /= p;
}
return res;
}
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t ; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.back() == 0 && C.size() > 1) C.pop_back();
return C;
}
int main()
{
int a, b;
cin >> a >> b;
get_primes(a);
for (int i = 0; i < cnt; i ++ )
{
int p = primes[i];
sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}
vector<int> res;
res.push_back(1);
for (int i = 0; i < cnt; i ++ )
for (int j = 0; j < sum[i]; j ++ )
res = mul(res, primes[i]);
for (int i = res.size() - 1; i >= 0; i -- ) printf("%d", res[i]);
puts("");
return 0;
}