#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int a[N], f[N];
int n;
int main()
{
int T;
cin >> T;
while (T -- )
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
int res = 0; // 求最值可以和合并到循环中!! :小技巧
for (int i = 1; i <= n; i ++ )
{
f[i] = 1;
for (int j = 1; j < i; j ++ )
if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
res = max(res, f[i]);
}
for (int i = n; i; i -- )
{
f[i] = 1;
for (int j = n; j > i; j -- )
if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
res = max(res, f[i]);
}
printf("%d\n", res);
}
return 0;
}
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int a[N], n;
int f1[N], f2[N]; // f[i] 表示 以 a[i] 为结尾的 最长下降子序列
int main()
{
int T;
cin >> T;
while (T -- )
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
// 从前往后的最长下降子序列
for (int i = 1; i <= n; i ++ )
{
f1[i] = f2[i] = 1;
for (int j = 1; j < i; j ++ )
if (a[j] > a[i]) f1[i] = max(f1[i], f1[j] + 1);
else if (a[j] < a[i]) f2[i] = max(f2[i], f2[j] + 1);
}
int res = 0;
for (int i = 1; i <= n; i ++ ) res = max(res, max(f1[i], f2[i]));
cout << res << endl;
}
return 0;
}
// 75 33 43 49 34 // 3