超宝赛高
算法1
树状数组$O(nlogn)$
就一点,树状数组每个tr[x]存储的是tr[x - lowbit(x) + 1] - tr[x]之间的最大值!
C++ 代码
#include <iostream>
#include <algorithm>
#include <cstring>
using LL = long long;
const int N = 100010;
int n, m;
int h[N], trmin[N], trmax[N];
int lowbit(int x)
{
return x & -x;
}
void add(int x, int c)
{
for(int i = x;i <= n;i += lowbit(i))
{
trmin[i] = std::min(trmin[i], c);
trmax[i] = std::max(trmax[i], c);
}
}
int get_max(int l, int r)
{
if(r > l)
{
if(r - lowbit(r) >= l) return std::max(trmax[r], get_max(l, r - lowbit(r)));
else return std::max(h[r], get_max(l, r - 1));
}
return h[l];
}
int get_min(int l, int r)
{
if(r > l)
{
if(r - lowbit(r) >= l) return std::min(trmin[r], get_min(l, r - lowbit(r)));
else return std::min(h[r], get_min(l, r - 1));
}
return h[l];
}
void solve()
{
scanf("%d%d", &n, &m);
memset(trmin, 0x3f, sizeof trmin);
for(int i = 1;i <= n;i ++)
{
scanf("%d", h + i);
add(i, h[i]);
}
while(m --)
{
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", get_max(a, b) - get_min(a, b));
printf("max = %d\n", get_max(a, b));
}
}
int main()
{
int t = 1;
while(t --) solve();
return 0;
}
算法2
(st表 / RMQ算法) $O(O(n)$
RMQ yyds
C++ 代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using LL = long long;
const int N = 100010, M = 17;
int n, m;
int f[N][M], g[N][M];
int h[N];
void init()
{
for(int j = 0;j < M;j ++)
for(int i = 1;i + (1 << j) - 1 <= n;i ++)
if(!j) f[i][j] = h[i];
else f[i][j] = std::max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
for(int j = 0;j < M;j ++)
for(int i = 1;i + (1 << j) - 1 <= n;i ++)
if(!j) g[i][j] = h[i];
else g[i][j] = std::min(g[i][j - 1], g[i + (1 << j - 1)][j - 1]);
}
int query_max(int l, int r)
{
int len = r - l + 1;
int k = log(len) / log(2);
return std::max(f[l][k], f[r - (1 << k) + 1][k]);
}
int query_min(int l, int r)
{
int len = r - l + 1;
int k = log(len) / log(2);
return std::min(g[l][k], g[r - (1 << k) + 1][k]);
}
void solve()
{
scanf("%d%d", &n, &m);
for(int i = 1;i <= n;i ++) scanf("%d", h + i);
init();
while(m --)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", query_max(l, r) - query_min(l, r));
}
}
int main()
{
int t = 1;
while(t --) solve();
return 0;
}