Floyd 模板
三重循环 k, i, j
#include<bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int g[N][N];
int n;
void floyd(){
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
g[i][j] = min(g[i][j], g[i][k]+g[k][j]);
}
}
}
}
int main(){
int m, k;
scanf("%d%d%d", &n, &m, &k);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) g[i][j] = 0;
else g[i][j] = INF;
}
}
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = min(g[a][b], c);
}
floyd();
while(k--){
int a, b;
scanf("%d%d", &a, &b);
if(g[a][b]>INF/2) printf("impossible\n");
else printf("%d\n", g[a][b]);
}
return 0;
}
SPFA判断负环 模板
本题可以背过!几个记忆点如下:
#include<bits/stdc++.h>
using namespace std;
const int N = 10010;
int h[N], e[N], w[N], ne[N], idx = 1;
int dist[N], st[N], cnt[N]; //cnt记录最短路径长度
int n, m;
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
bool spfa(){
queue<int> q;
for(int i=1;i<=n;i++){
q.push(i);
st[i] = 1;
}
while(q.size()){
int a = q.front();
q.pop();
st[a] = 0;
for(int i=h[a];i;i=ne[i]){
int b = e[i];
if(dist[b]>dist[a]+w[i]){
dist[b] = dist[a]+w[i];
cnt[b] = cnt[a]+1;
if(cnt[b]>=n) return true;
if(!st[b]){
q.push(b);
st[b] = 1;
}
}
}
}
return false;
}
int main(){
scanf("%d%d", &n, &m);
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
if(spfa()) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}
SPFA 模板
四种求最短路方法的对比:
一般用SPFA判断负环。(Bellman-Ford也可)
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int h[N], e[N], w[N], ne[N], idx = 1;
int dist[N], st[N];
int n, m;
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
void spfa(){
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = 1;
while(q.size()){
int a = q.front();
q.pop();
st[a] = 0;
for(int i=h[a];i;i=ne[i]){
int b = e[i];
if(dist[b]>dist[a]+w[i]){
dist[b] = dist[a]+w[i];
if(!st[b]){
q.push(b);
st[b] = 1;
}
}
}
}
}
int main(){
scanf("%d%d", &n, &m);
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
spfa();
if(dist[n]==0x3f3f3f3f) printf("impossible\n");
else printf("%d\n", dist[n]);
return 0;
}
虚拟源点直接表示点权 + 反向建图 + 枚举区间
图论的关键问题还是在建图上,多积累经验吧。
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int g[N][N], L[N];
int dist[N], st[N];
int n, m;
int minL, maxL;
void dijkstra(int k){
memset(dist, 0x3f, sizeof(dist));
memset(st, 0, sizeof(st));
dist[k] = 0;
for(int i=0;i<n;i++){
int t = -1;
for(int j=0;j<=n;j++){
if(!st[j]&&(t==-1||dist[t]>dist[j])){
t = j;
}
}
st[t] = 1;
for(int j=0;j<=n;j++){
if(L[j]>=minL&&L[j]<=maxL){
dist[j] = min(dist[j], dist[t]+g[t][j]);
}
}
}
}
int main(){
scanf("%d%d", &m, &n);
memset(g, 0x3f, sizeof(g));
for(int i=1;i<=n;i++){
int p, x;
scanf("%d%d%d", &p, &L[i], &x);
g[0][i] = p;
while(x--){
int t, v;
scanf("%d%d", &t, &v);
g[t][i] = v;
}
}
int res = 0x3f3f3f3f;
for(int i=max(1, L[1]-m);i<=L[1];i++){
minL = i;
maxL = i+m;
dijkstra(0);
res = min(res, dist[1]);
}
cout << res << endl;
return 0;
}
点的集合到其他点的最短路径问题 —— 建立一个虚拟源点,虚拟源点到点的集合内的各点都存在一条边权为0的边
太妙了,这个技巧要狠狠记住!
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 100010;
int h[N], e[3*N], w[3*N], ne[3*N], idx = 1;
int dist[N], st[N];
int n, m;
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
int dijkstra(int k){
memset(dist, 0x3f3f3f3f, sizeof(dist));
memset(st, 0, sizeof(st));
priority_queue<PII, vector<PII>, greater<PII>> heak;
dist[k] = 0;
heak.push({0, k});
while(heak.size()){
int a = heak.top().second;
heak.pop();
if(st[a]) continue;
st[a] = 1;
for(int i=h[a];i;i=ne[i]){
int b = e[i];
dist[b] = min(dist[b], dist[a]+w[i]);
if(!st[b]){
heak.push({dist[b], b});
}
}
}
}
int main(){
scanf("%d%d", &n, &m);
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
add(b, a, c);
}
int k;
scanf("%d", &k);
while(k--){
int t;
scanf("%d", &t);
add(0, t, 0);
}
dijkstra(0);
int q;
scanf("%d", &q);
while(q--){
int k;
scanf("%d", &k);
printf("%d\n", dist[k]);
}
return 0;
}
堆优化的dijkstra
堆优化选取dist最小点的过程
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 150010;
int h[N], e[N], w[N], ne[N], idx = 1;
int st[N], dist[N];
int n, m;
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
int dijkstra(int k){
memset(dist, 0x3f, sizeof(dist));
dist[k] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heak;
heak.push({dist[k], k});
while(heak.size()){
int a = heak.top().second;
heak.pop();
if(st[a]) continue;
st[a] = 1;
for(int i=h[a];i;i=ne[i]){
int b = e[i];
dist[b] = min(dist[b], dist[a]+w[i]);
if(!st[b]){
heak.push({dist[b], b});
}
}
}
if(dist[n]==0x3f3f3f3f) return -1;
else return dist[n];
}
int main(){
scanf("%d%d", &n, &m);
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
cout << dijkstra(1) << endl;
return 0;
}
dijkstra 模板
#include<bits/stdc++.h>
using namespace std;
const int N = 510;
int g[N][N];
int dist[N], st[N];
int n, m;
int dijkstra(int k){
memset(dist, 0x3f, sizeof(dist));
dist[k] = 0;
for(int i=0;i<n;i++){
int t = -1;
for(int j=1;j<=n;j++){
if(!st[j]&&(t==-1||dist[j]<dist[t])){
t = j;
}
}
st[t] = 1;
for(int j=1;j<=n;j++){
dist[j] = min(dist[j], dist[t]+g[t][j]);
}
}
if(dist[n]==0x3f3f3f3f) return -1;
else return dist[n];
}
int main(){
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof(g));
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(g[a][b]>c) g[a][b] = c;
}
cout << dijkstra(1) << endl;
return 0;
}
拓扑排序 + 图的中间点存储方式降低复杂度($O(n*m) \rightarrow O(n+m)$)
暴力复杂度$O(n*m^2)$会TLE,使用中间点存储先拓扑后求路径的方式复杂度$O((n+m)*m)$
#include<bits/stdc++.h>
using namespace std;
const int N = 2010, M = 1000010;
int h[N], e[M], ne[M], w[M], idx = 1;
int q[N], d[N], dist[N];
int st[N];
int n, m;
void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
d[b] ++;
}
void toposort(){
int head = 0, rear = 0;
for(int i=1;i<=n+m;i++){
if(!d[i]){
q[rear++] = i;
}
}
while(head<rear){
int a = q[head++];
for(int i=h[a];i;i=ne[i]){
int b = e[i];
d[b] --;
if(!d[b]){
q[rear++] = b;
}
}
}
}
int main(){
scanf("%d%d", &n, &m);
for(int i=1;i<=m;i++){
int s;
scanf("%d", &s);
memset(st, 0, sizeof(st));
int start, end;
for(int j=0;j<s;j++){
int t;
scanf("%d", &t);
st[t] = 1;
add(t, n+i, 0);
if(j==0) start = t;
if(j==s-1) end = t;
}
for(int j=start;j<=end;j++){
if(!st[j]){
add(n+i, j, 1);
}
}
}
toposort();
for(int i=0;i<n+m;i++){
int a = q[i];
for(int j=h[a];j;j=ne[j]){
int b = e[j];
dist[b] = max(dist[b], dist[a]+w[j]);
}
}
int res = 0;
for(int i=1;i<=n;i++){
res = max(res, dist[i]);
}
cout << res+1 << endl;
return 0;
}
简单的拓扑排序
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int h[N], e[2*N], ne[2*N], idx;
int d[N];
int n;
void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
void toposort(){
queue<int> q;
for(int i=1;i<=n;i++){
if(!d[i]) q.push(i);
}
while(!q.empty()){
int a = q.front();
printf("%d ", a);
q.pop();
for(int i=h[a];i!=-1;i=ne[i]){
int b = e[i];
d[b] --;
if(!d[b]){
q.push(b);
}
}
}
}
int main(){
scanf("%d", &n);
memset(h, -1, sizeof(h));
for(int i=1;i<=n;i++){
while(1){
int j;
scanf("%d", &j);
if(!j) break;
add(i, j);
d[j] ++;
}
}
toposort();
return 0;
}