524. 愤怒的小鸟

Kiana 最近沉迷于一款神奇的游戏无法自拔。   

简单来说,这款游戏是在一个平面上进行的。 

有一架弹弓位于 $(0,0)$ 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均为形如 $y=ax^2+bx$ 的曲线,其中 $a,b$ 是 Kiana 指定的参数,且必须满足 $a<0$。

当小鸟落回地面(即 $x$ 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 $n$ 只绿色的小猪,其中第 $i$ 只小猪所在的坐标为 $(x_i,y_i)$。 

如果某只小鸟的飞行轨迹经过了 $(x_i, y_i)$,那么第 $i$ 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行; 

如果一只小鸟的飞行轨迹没有经过 $(x_i, y_i)$,那么这只小鸟飞行的全过程就不会对第 $i$ 只小猪产生任何影响。 

例如,若两只小猪分别位于 $(1,3)$ 和 $(3,3)$,Kiana 可以选择发射一只飞行轨迹为 $y=−x^2+4x$ 的小鸟,这样两只小猪就会被这只小鸟一起消灭。 

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。 

这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个这个游戏。   

这些指令将在输入格式中详述。 

假设这款游戏一共有 $T$ 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。  

由于她不会算,所以希望由你告诉她。

注意:本题除 NOIP 原数据外,还包含加强数据。

输入格式

第一行包含一个正整数 $T$,表示游戏的关卡总数。

下面依次输入这 $T$ 个关卡的信息。

每个关卡第一行包含两个非负整数 $n,m$,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。

接下来的 $n$ 行中,第 $i$ 行包含两个正实数 $(x_i,y_i)$,表示第 $i$ 只小猪坐标为 $(x_i,y_i)$,数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 $m=0$,表示 Kiana 输入了一个没有任何作用的指令。

如果 $m=1$,则这个关卡将会满足:至多用 $⌈n/3+1⌉$ 只小鸟即可消灭所有小猪。

如果 $m=2$,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 $⌊n/3⌋$ 只小猪。

保证 $1 \le n \le 18,0 \le m \le 2,0<x_i,y_i<10$,输入中的实数均保留到小数点后两位。

上文中,符号 $⌈c⌉$ 和 $⌊c⌋$ 分别表示对 $c$ 向上取整和向下取整,例如 :$⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3$。

输出格式

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

数据范围

QQ截图20210311115727.png

输入样例:

2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00

输出样例:

1
1