250. 磁力块

在一片广袤无垠的原野上,散落着N块磁石。

每个磁石的性质可以用一个五元组(x,y,m,p,r)描述,其中x,y表示其坐标,m是磁石的质量,p是磁力,r是吸引半径。

若磁石A与磁石B的距离不大于磁石A的吸引半径,并且磁石B的质量不大于磁石A的磁力,那么A可以吸引B。

小取酒带着一块自己的磁石L来到了这片原野的$(x_0,y_0)$处,我们可以视磁石L的坐标为$(x_0,y_0)$。

小取酒手持磁石L并保持原地不动,所有可以被L吸引的磁石将会被吸引过来。

在每个时刻,他可以选择更换任意一块自己已经获得的磁石(当然也可以是自己最初携带的L磁石)在$(x_0,y_0)$处吸引更多的磁石。

小取酒想知道,他最多能获得多少块磁石呢?

输入格式

第一行五个整数$x_0,y_0,p_L,r_L,N$,表示小取酒所在的位置,磁石L磁力、吸引半径和原野上散落磁石的个数。

接下来N行每行五个整数x,y,m,p,r,描述一块磁石的性质。

输出格式

输出一个整数,表示最多可以获得的散落磁石个数(不包含最初携带的磁石L)。

数据范围

$1 \le N \le 250000$,
$-10^9 \le x,y \le 10^9$,
$1 \le m,p,r \le 10^9$

输入样例:

0 0 5 10 5
5 4 7 11 5
-7 1 4 7 8
0 2 13 5 6
2 -3 9 3 4
13 5 1 9 9

输出样例:

3