91. 最短Hamilton路径

给定一张 $n$ 个点的带权无向图,点从 $0 \sim n-1$ 标号,求起点 $0$ 到终点 $n-1$ 的最短 Hamilton 路径。

Hamilton 路径的定义是从 $0$ 到 $n-1$ 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 $n$。

接下来 $n$ 行每行 $n$ 个整数,其中第 $i$ 行第 $j$ 个整数表示点 $i$ 到 $j$ 的距离(记为 $a[i,j]$)。

对于任意的 $x,y,z$,数据保证 $a[x,x]=0,a[x,y]=a[y,x]$ 并且 $a[x,y]+a[y,z] \ge a[x,z]$。

输出格式

输出一个整数,表示最短 Hamilton 路径的长度。

数据范围

$1 \le n \le 20$
$0 \le a[i,j] \le 10^7$

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18